Step 1:
Recall that if \(h = f \circ g^{-1}\), then by the chain rule,
\[
h'(x) = \frac{d}{dx} f(g^{-1}(x)) = f'(g^{-1}(x)) \cdot \frac{d}{dx} g^{-1}(x).
\]
Using the formula for derivative of inverse function,
\[
\frac{d}{dx} g^{-1}(x) = \frac{1}{g'(g^{-1}(x))}.
\]
Thus,
\[
h'(x) = \frac{f'(g^{-1}(x))}{g'(g^{-1}(x))}.
\]
Step 2:
We need to find \(h'(2)\). First find \(g^{-1}(2)\).
Given,
\[
g(x) = \frac{4}{1 + e^{-2x}}.
\]
Set \(y = g(x) = 2\),
\[
2 = \frac{4}{1 + e^{-2x}} \implies 1 + e^{-2x} = 2,
\]
\[
e^{-2x} = 1,
\]
\[
-2x = 0 \implies x = 0.
\]
So,
\[
g^{-1}(2) = 0.
\]
Step 3:
Calculate \(f'(x)\).
\[
f(x) = \log_e (x^2 + 2x + 4).
\]
Using chain rule,
\[
f'(x) = \frac{1}{x^2 + 2x + 4} \cdot \frac{d}{dx} (x^2 + 2x + 4) = \frac{2x + 2}{x^2 + 2x + 4}.
\]
Evaluate at \(x = g^{-1}(2) = 0\):
\[
f'(0) = \frac{2(0) + 2}{0^2 + 2(0) + 4} = \frac{2}{4} = \frac{1}{2}.
\]
Step 4:
Calculate \(g'(x)\).
\[
g(x) = \frac{4}{1 + e^{-2x}} = 4 \left(1 + e^{-2x}\right)^{-1}.
\]
Differentiating,
\[
g'(x) = 4 \cdot (-1) \cdot \left(1 + e^{-2x}\right)^{-2} \cdot \frac{d}{dx} (1 + e^{-2x}).
\]
\[
\frac{d}{dx} (1 + e^{-2x}) = -2 e^{-2x}.
\]
Thus,
\[
g'(x) = 4 \cdot (-1) \cdot \left(1 + e^{-2x}\right)^{-2} \cdot (-2 e^{-2x}) = 8 \cdot \frac{e^{-2x}}{(1 + e^{-2x})^2}.
\]
Evaluate at \(x = 0\):
\[
g'(0) = 8 \cdot \frac{e^{0}}{(1 + e^{0})^2} = 8 \cdot \frac{1}{(1 + 1)^2} = 8 \cdot \frac{1}{4} = 2.
\]
Step 5:
Finally, compute
\[
h'(2) = \frac{f'(g^{-1}(2))}{g'(g^{-1}(2))} = \frac{f'(0)}{g'(0)} = \frac{\frac{1}{2}}{2} = \frac{1}{4}.
\]
Since this value \(\frac{1}{4}\) is not listed among the options, there might be a typo in the question or options. But mathematically, the value of the derivative is \(\frac{1}{4}\).