Step 1: Check if \( f(x) \) is one-one.
For \( f(x) \) to be one-one, \( f(a) = f(b) \) must imply \( a = b \). Let:
\[
f(x) = x^2 + 1.
\]
Assume \( f(a) = f(b) \):
\[
a^2 + 1 = b^2 + 1.
\]
Simplify:
\[
a^2 = b^2 \quad \Rightarrow \quad a = b \, {(since \( x \in \mathbb{R}_+ \))}.
\]
Thus, \( f(x) \) is one-one.
Step 2: Check if \( f(x) \) is onto.
For \( f(x) \) to be onto, every \( y \in \mathbb{R}_+ \) must have a corresponding \( x \in \mathbb{R}_+ \) such that \( f(x) = y \). Let:
\[
f(x) = y \quad \Rightarrow \quad x^2 + 1 = y \quad \Rightarrow \quad x^2 = y - 1.
\]
For \( x^2 \geq 0 \), \( y - 1 \geq 0 \), or \( y \geq 1 \). Thus, \( f(x) \) is not onto because it cannot produce values in \( [0, 1) \).
Final Answer: \( \boxed{ {(A)}} \)