\[ MN = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = 2 \]
Then the maximum value of \( \det(M) + \det(N) \) is ...............\[ MN = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}. \]
We are asked to find the maximum value of \( \det(M) + \det(N) \).\[ \det(MN) = \det(M) \cdot \det(N). \]
We can calculate \( \det(MN) \). Since the given matrix is a square matrix, we compute:\[ \det(MN) = \det\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = 1. \]
Thus, we have:\[ \det(M) \cdot \det(N) = 1. \]
This means that the product of the determinants of \( M \) and \( N \) is 1.\[ x + \frac{1}{x}. \]
To find the maximum, we differentiate \( x + \frac{1}{x} \) and set it equal to zero:\[ \frac{d}{dx}\left(x + \frac{1}{x}\right) = 1 - \frac{1}{x^2}. \]
Setting this equal to zero:\[ 1 - \frac{1}{x^2} = 0 \quad \Rightarrow \quad x^2 = 1 \quad \Rightarrow \quad x = \pm 1. \]
Thus, the maximum value of \( x + \frac{1}{x} \) occurs when \( x = 1 \), and we get:\[ 1 + \frac{1}{1} = 2. \]
\[ \boxed{2}. \]