Let \( m, n \in \mathbb{N}, m < n, P \in M_{n \times m}(\mathbb{R}), Q \in M_{m \times n}(\mathbb{R}) \). Which of the following is (are) NOT possible?
\( \text{rank}(PQ) = n \)
\( \text{rank}(QP) = m \)
\( \text{rank}(PQ) = m \)
\( \text{rank}(QP) = \left\lceil\dfrac{m+n}{2}\right\rceil \) the smallest integer larger than or equal to \(\dfrac{m+n}{2}\)
Key facts
\(\operatorname{rank}(PQ) \le \min(\operatorname{rank} P,\operatorname{rank} Q)\le m\)
\(\operatorname{rank}(QP) \le m\) since (QP) is \(m\times m\)
Now check options:
(A) \(\operatorname{rank}(PQ)=n\)
Impossible since \(\operatorname{rank}(PQ)\le m<n\).
(B) \(\operatorname{rank}(QP)=m\)
Possible (take (QP) full rank).
(C) \(\operatorname{rank}(PQ)=m\)
Possible (maximum attainable rank).
(D) \(\operatorname{rank}(QP)=\left\lceil\frac{m+n}{2}\right\rceil\)
Since (n>m), \(\left\lceil\frac{m+n}{2}\right\rceil>m\), but \(\operatorname{rank}(QP)\le m\). Impossible.
Correct answer (NOT possible): A and D