Given :
M = (aij), i, j ∈ {1, 2, 3},
aij = 1 if j + 1 is divisible by i, otherwise aij = 0
\(M=\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}\)
|M| = 1(-1) - 1(-1)
= -1 + 1 = 0
So, M is not invertible
\(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}=\begin{bmatrix} -a_{1} \\ -a_{2} \\ -a_{3} \end{bmatrix}\)
\(\begin{bmatrix} a_1+ a_2 +a_3 \\ a_1+a_3 \\ a_2 \end{bmatrix}=\begin{bmatrix} -a_{1} \\ -a_{2} \\ -a_{3} \end{bmatrix}\)
There exists an infinite number of possible column matrices.
\(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\)
x + y + z = 0
⇒ x + z = 0
y = 0
So, this is possible only.
\(|M-2I|=\begin{bmatrix} -1 & 1 & 1 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}\)
\(=-1(3)-1(-2-1)=-3+3=0\)
So, the correct options are (B) and (C).
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
The matrix acquired by interchanging the rows and columns of the parent matrix is called the Transpose matrix. The transpose matrix is also defined as - “A Matrix which is formed by transposing all the rows of a given matrix into columns and vice-versa.”
The transpose matrix of A is represented by A’. It can be better understood by the given example:


Now, in Matrix A, the number of rows was 4 and the number of columns was 3 but, on taking the transpose of A we acquired A’ having 3 rows and 4 columns. Consequently, the vertical Matrix gets converted into Horizontal Matrix.
Hence, we can say if the matrix before transposing was a vertical matrix, it will be transposed to a horizontal matrix and vice-versa.
Read More: Transpose of a Matrix