Step 1:
$k + 4 \equiv 0 \pmod{7} \Rightarrow k \equiv -4 \equiv 3 \pmod{7}$
Step 2: Want $k + 2n \equiv 0 \pmod{7}$
So:
\[
3 + 2n \equiv 0 \pmod{7} \Rightarrow 2n \equiv -3 \equiv 4 \pmod{7}
\]
Now solve $2n \equiv 4 \pmod{7}$
Multiply both sides by inverse of 2 mod 7:
$2^{-1} \equiv 4$ (since $2 \cdot 4 = 8 \equiv 1$ mod 7)
\[
n \equiv 4 \cdot 4 = 16 \equiv 2 \pmod{7}
\Rightarrow n = 2, 9, 16, \dots
\]
We want smallest $n>2$
\[
\boxed{9}
\]
Wait! That’s a contradiction.
Hold on:
$2n \equiv 4 \pmod{7} \Rightarrow n \equiv 2 \pmod{7} \Rightarrow n = 2, 9, 16, \dots$
But question says $n>2$
\[
\Rightarrow \boxed{9}
\]