A circle \(x^2+y^2=4\) intersects the \(x\)-axis at \(A(-2,0)\) and \(B(2,0)\).
If two variable points \(P(2\cos\alpha,\,2\sin\alpha)\) and
\(Q(2\cos\beta,\,2\sin\beta)\) vary on the circle such that
\(\alpha-\beta=\dfrac{\pi}{2}\), then find the locus of the point of intersection of lines \(AP\) and \(BQ\).