Given:
\[
I_n = \int (\cos^n x + \sin^n x) dx
\]
and:
\[
\frac{n - 1}{n} I_{n - 2} = \frac{\sin x \cos x}{n} f(x)
\]
We know that:
\[
\int \cos^n x \, dx \Rightarrow \text{use reduction formula: } \int \cos^n x \, dx = \frac{\cos^{n-1}x \sin x}{n} + \frac{n - 1}{n} \int \cos^{n - 2}x \, dx
\]
Similarly for \( \sin^n x \). So:
\[
I_n = \int \cos^n x \, dx + \int \sin^n x \, dx
\Rightarrow \frac{n - 1}{n} I_{n - 2} = \frac{\sin x \cos x}{n} f(x)
\]
So the integrand must be:
\[
f(x) = \cos^{n - 2}x - \sin^{n - 2}x
\]
Because multiplying by \( \sin x \cos x \) gives parts of the integration by parts or recursive form.