Newton's law of cooling:
\[
\frac{dT}{dt} = k(40 - T).
\]
Solution of differential equation:
\[
T(t) = 40 - (40 - T_0)e^{-kt}.
\]
Given initial temperature:
\[
T_0 = 2^\circ C.
\]
So:
\[
T(t) = 40 - 38 e^{-kt}.
\]
Given $T(2) = 15$:
\[
15 = 40 - 38 e^{-2k},
\]
\[
38 e^{-2k} = 25,
\]
\[
e^{-2k} = \frac{25}{38}.
\]
Thus:
\[
e^{-k} = \sqrt{\frac{25}{38}}.
\]
Now find $t$ such that $T(t) = 39.5^\circ$C:
\[
39.5 = 40 - 38 e^{-kt},
\]
\[
38 e^{-kt} = 0.5,
\]
\[
e^{-kt} = \frac{0.5}{38}.
\]
Take logarithm:
\[
-kt = \ln\left(\frac{0.5}{38}\right).
\]
But $e^{-k} = \sqrt{\frac{25}{38}}$, so:
\[
e^{-kt} = (e^{-k})^{t} = \left(\sqrt{\frac{25}{38}}\right)^{t}.
\]
Therefore:
\[
\left(\sqrt{\frac{25}{38}}\right)^t = \frac{0.5}{38}.
\]
Take logs:
\[
t = \frac{\ln(0.5/38)}{\ln\left(\sqrt{\frac{25}{38}}\right)}.
\]
Compute numerically:
\[
t \approx 20.6\ \text{minutes}.
\]
Thus:
\[
\boxed{20.60}
\quad (\text{acceptable range: } 20.40\text{–}20.80)
\]