To solve the problem, we need to evaluate the expression \( f( f(g(x)) + g(f(x)) ) \) at \( x = 1 \). Here are the steps:
\( g(x) = 2x \rightarrow g(1) = 2 \times 1 = 2 \)
\( f(x) = x^2 \rightarrow f(1) = 1^2 = 1 \)
\( f(g(x)) = f(2) = 2^2 = 4 \)
\( g(f(x)) = g(1) = 2 \times 1 = 2 \)
\( f(g(x)) + g(f(x)) = 4 + 2 = 6 \)
\( f(6) = 6^2 = 36 \)
Thus, the value of \( f( f(g(x)) + g(f(x)) ) \) at \( x = 1 \) is 36.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: