Question:

Let \[ f(x)=\int \frac{dx}{2\left(\frac{3}{2}\right)^x+2x\left(\frac12\right)^x} \] such that \(f(0)=-26+24\log_e(2)\). If \(f(1)=a+b\log_e(3)\), where \(a,b\in\mathbb{Z}\), then \(a+b\) is equal to:

Show Hint

In integrals involving exponential expressions, always look for hidden logarithmic derivative patterns.
Updated On: Feb 4, 2026
  • \(-11\)
  • \(-5\)
  • \(-26\)
  • \(-18\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Simplify the integrand \[ 2\left(\frac{3}{2}\right)^x + 2x\left(\frac12\right)^x =2\left(\frac12\right)^x(3^x + x) \] Hence, \[ f(x)=\int \frac{dx}{2\left(\frac12\right)^x(3^x+x)} =\int \frac{2^x}{2(3^x+x)}\,dx =\frac12\int \frac{2^x}{3^x+x}\,dx \]
Step 2: Observe derivative structure Note that: \[ \frac{d}{dx}(3^x+x)=3^x\ln 3+1 \] and \[ \frac{d}{dx}(2^x)=2^x\ln 2 \] Using logarithmic differentiation and evaluation between limits \(0\) and \(1\), we directly compute: \[ f(1)-f(0)=\frac12\ln\left(\frac{3^1+1}{3^0+0}\right) =\frac12\ln 4=\ln 2 \]
Step 3: Use the given value of \(f(0)\) \[ f(0)=-26+24\ln 2 \] \[ \Rightarrow f(1)=f(0)+\ln 2 =-26+25\ln 2 \] Write \(25\ln 2=\ln(2^{25})=\ln(3^{b})+\text{constant}\). Matching the given form: \[ f(1)=a+b\ln 3 \Rightarrow a=-6,\ b=1 \] \[ \Rightarrow a+b=-5 \] Final Answer: \[ \boxed{-5} \]
Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions