For the function \( f(x) \) to be continuous at \( x = 0 \), the following condition must hold:
\[
f(0) = \lim_{x \to 0} f(x).
\]
Step 1: Evaluate the limit.
We are given the function:
\[
f(x) = \frac{2 - \sqrt{x + 4}}{\sin 2x}.
\]
As \( x \to 0 \), both the numerator and denominator approach zero, leading to an indeterminate form \( \frac{0}{0} \). In such cases, we apply L'Hôpital's Rule:
\[
\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\frac{d}{dx}(2 - \sqrt{x + 4})}{\frac{d}{dx}(\sin 2x)}.
\]
Step 2: Differentiate the numerator and denominator.
The derivatives of the numerator and denominator are:
\[
\frac{d}{dx}(2 - \sqrt{x + 4}) = -\frac{1}{2\sqrt{x + 4}}, \quad \frac{d}{dx}(\sin 2x) = 2 \cos 2x.
\]
Substituting these into the limit expression, we get:
\[
\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{-\frac{1}{2\sqrt{x + 4}}}{2 \cos 2x}.
\]
Step 3: Simplify the expression.
At \( x = 0 \), we know:
\[
\sqrt{x + 4} = \sqrt{4} = 2, \quad \cos 2x = \cos 0 = 1.
\]
Substitute these values into the expression:
\[
\lim_{x \to 0} f(x) = \frac{-\frac{1}{2 \cdot 2}}{2 \cdot 1} = \frac{-\frac{1}{4}}{2} = -\frac{1}{8}.
\]
Step 4: Define \( f(0) \).
To ensure the function is continuous at \( x = 0 \), we define:
\[
f(0) = -\frac{1}{8}.
\]
Final Answer:
\[
\boxed{-\frac{1}{8}}.
\]