Step 1: Check derivatives. For $x<-5, f'(x) = -55<0$ (Decreasing).
Step 2: For $-5<x<4, f'(x) = 6x^2 - 6x - 120 = 6(x^2 - x - 20) = 6(x-5)(x+4)$.
In $(-5, 4)$, $f'(x)>0$ when $x \in (-5, -4)$ and $f'(x)<0$ when $x \in (-4, 4)$.
Step 3: For $x>4, f'(x) = 6x^2 - 6x - 36 = 6(x^2 - x - 6) = 6(x-3)(x+2)$.
For $x>4$, both $(x-3)$ and $(x+2)$ are positive, so $f'(x)>0$ (Increasing).
Step 4: $A = (-5, -4) \cup (4, \infty)$.