Step 1: Understanding the Question:
We need to find the absolute minimum value of the function f(x) = x\(^{2025}\) - x\(^{2000}\) on the closed interval [0, 1]. We can use calculus to find critical points and then evaluate the function at these points and the interval endpoints.
Step 2: Finding Critical Points:
First, find the derivative of f(x) and set it to zero.
\[ f'(x) = 2025x^{2024} - 2000x^{1999} \]
Set \(f'(x) = 0\):
\[ 2025x^{2024} - 2000x^{1999} = 0 \]
Factor out the lowest power of x, which is \(x^{1999}\):
\[ x^{1999}(2025x^{25} - 2000) = 0 \]
This gives two potential critical points: \(x=0\) (which is an endpoint) and \(2025x^{25} - 2000 = 0\).
Solving for x from the second part:
\[ x^{25} = \frac{2000}{2025} = \frac{25 \times 80}{25 \times 81} = \frac{80}{81} \]
\[ x = \left(\frac{80}{81}\right)^{1/25} \]
This critical point is between 0 and 1, so it is within our interval.
Step 3: Evaluating the Function:
We evaluate f(x) at the endpoints (0 and 1) and at the critical point \(x_c = (80/81)^{1/25}\).
At \(x=0\): \(f(0) = 0^{2025} - 0^{2000} = 0\).
At \(x=1\): \(f(1) = 1^{2025} - 1^{2000} = 1 - 1 = 0\).
At \(x_c = \left(\frac{80}{81}\right)^{1/25}\):
\[ f(x_c) = x_c^{2025} - x_c^{2000} = x_c^{2000}(x_c^{25} - 1) \]
Substitute the values we found:
\[ f(x_c) = \left(\left(\frac{80}{81}\right)^{1/25}\right)^{2000} \left(\frac{80}{81} - 1\right) \]
\[ f(x_c) = \left(\frac{80}{81}\right)^{80} \left(-\frac{1}{81}\right) = -\frac{80^{80}}{81^{80} \cdot 81} = -\frac{80^{80}}{81^{81}} \]
Step 4: Final Answer:
The values of the function are 0, 0, and a negative value \(-\frac{80^{80}}{81^{81}}\). The minimum value is therefore \(-\frac{80^{80}}{81^{81}}\).