Question:

Let \( f(x) = -3x^2(1 - x) - 3x(1 - x)^2 - (1 - x)^3 \). Then, \( \frac{df(x)}{dx} = \)

Show Hint

When differentiating composite algebraic expressions, simplify or expand the expression first before applying derivatives term-by-term.
Updated On: Apr 20, 2025
  • \( 3x^2 \)
  • \( 3(1 - x)^2 \)
  • \( 3x(1 - x) \)
  • \( x \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Expand the function \( f(x) \).
\[ f(x) = -3x^2(1 - x) - 3x(1 - x)^2 - (1 - x)^3 \] First, expand each term: \[ -3x^2(1 - x) = -3x^2 + 3x^3 \] \[ -3x(1 - x)^2 = -3x(1 - 2x + x^2) = -3x + 6x^2 -3x^3 \] \[ -(1 - x)^3 = -(1 - 3x + 3x^2 - x^3) = -1 + 3x -3x^2 + x^3 \] Add all the terms: \[ f(x) = (-3x^2 + 3x^3) + (-3x + 6x^2 - 3x^3) + (-1 + 3x -3x^2 + x^3) \] Combine like terms: \[ f(x) = (-3x^2 + 6x^2 -3x^2) + (3x^3 - 3x^3 + x^3) + (-3x + 3x) + (-1) \] \[ = 0x^2 + x^3 - 1 = x^3 - 1 \] Step 2: Differentiate \( f(x) = x^3 - 1 \).
\[ \frac{df(x)}{dx} = 3x^2 \]
Was this answer helpful?
0
0

Questions Asked in GATE XH-C1 exam

View More Questions