Let \( f : \mathbb{R} \to \mathbb{R} \) be defined by \[ f(x) = \begin{cases} x^4(2 + \sin \frac{1}{x}), & x \neq 0, \\ 0, & x = 0. \end{cases} \] Then which of the following statement(s) is (are) true?
Given: $$f(x) = \begin{cases} x^4\left(2 + \sin\frac{1}{x}\right), & x \neq 0 \ 0, & x = 0 \end{cases}$$
For $x \neq 0$: $$f(x) = x^4\left(2 + \sin\frac{1}{x}\right)$$
Since $-1 \leq \sin\frac{1}{x} \leq 1$, we have: $$1 \leq 2 + \sin\frac{1}{x} \leq 3$$
Therefore, for $x \neq 0$: $$x^4 \leq f(x) \leq 3x^4$$
This means $f(x) \geq x^4 > 0$ for all $x \neq 0$.
At $x = 0$: $f(0) = 0$
Since $f(x) > 0$ for all $x \neq 0$ and $f(0) = 0$, the function attains its minimum value of 0 at $x = 0$.
Option (A) is TRUE
Let's check if $f$ is monotone by examining its behavior near 0.
Consider small positive values: For $x = \frac{2}{(2n+1)\pi}$ where $\sin\frac{1}{x} = \sin\left(\frac{(2n+1)\pi}{2}\right) = \pm 1$ alternates.
The function oscillates due to the $\sin\frac{1}{x}$ term, so $f$ is not monotone.
Option (B) is FALSE
To check differentiability at 0, we compute: $$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^4\left(2 + \sin\frac{1}{h}\right)}{h}$$
$$= \lim_{h \to 0} h^3\left(2 + \sin\frac{1}{h}\right)$$
Since $\left|2 + \sin\frac{1}{h}\right| \leq 3$ and $h^3 \to 0$ as $h \to 0$: $$|f'(0)| = \left|h^3\left(2 + \sin\frac{1}{h}\right)\right| \leq 3|h|^3 \to 0$$
Therefore, $f'(0) = 0$ exists.
Option (C) is TRUE
We need to check if: $$x^4\left(2 + \sin\frac{1}{x}\right) > 2x^4 + x^3$$
This simplifies to: $$x^4\sin\frac{1}{x} > x^3$$ $$x\sin\frac{1}{x} > 1$$
However, we know that $|\sin\frac{1}{x}| \leq 1$, so $|x\sin\frac{1}{x}| \leq |x|$.
For small $x > 0$, we have $x\sin\frac{1}{x} \leq x < 1$, which means the inequality doesn't hold for all $x > 0$.
Specifically, for $x = 0.5$: $x\sin\frac{1}{x} = 0.5\sin(2) \approx 0.5(0.909) \approx 0.455 < 1$.
Option (D) is FALSE
Answer: (A) and (C)
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is: