The functional equation
\[
f(x+y)+f(x-y)=2f(x)f(y)
\]
has the standard solution
\[
f(x)=\cos(ax)
\]
Using $f(\tfrac12)=-1$:
\[
\cos\!\left(\tfrac a2\right)=-1
\Rightarrow \tfrac a2=\pi
\Rightarrow a=2\pi
\]
Hence,
\[
f(x)=\cos(2\pi x)
\]
For integer $k$,
\[
f(k)=\cos(2\pi k)=1
\]
So the sum becomes:
\[
\sum_{k=1}^{20}\frac{1}{\sin k\,\sin(k+1)}
\]
Using the identity:
\[
\cot k-\cot(k+1)=\frac{\sin(1)}{\sin k\,\sin(k+1)}
\]
\[
\Rightarrow \frac{1}{\sin k\,\sin(k+1)}
=\frac{1}{\sin(1)}\big[\cot k-\cot(k+1)\big]
\]
Hence the sum telescopes:
\[
\sum_{k=1}^{20}\frac{1}{\sin k\,\sin(k+1)}
=\frac{1}{\sin(1)}\big[\cot(1)-\cot(21)\big]
\]
\[
=\frac{1}{\sin(1)}\cdot
\frac{\sin(21-1)}{\sin(1)\sin(21)}
=\csc(1)\csc(21)\sin(20)
\]