Let \( f : \mathbb{R} \to \mathbb{R} \) be a differentiable function such that \( f^\prime \) is continuous on \( \mathbb{R} \) with \( f^\prime(3) = 18 \). Define \[ g_n(x) = n \left( f \left( x + \frac{5}{n} \right) - f \left( x - \frac{2}{n} \right) \right). \] Then \( \lim_{n \to \infty} g_n(3) \) equals ...............
Step 1: Understand the expression for \( g_n(x) \).
We are given the function \( g_n(x) = n \left( f \left( x + \frac{5}{n} \right) - f \left( x - \frac{2}{n} \right) \right) \).
Step 2: Use the definition of the derivative.
The expression for \( g_n(x) \) resembles a finite difference approximation to the derivative of \( f(x) \). We can rewrite the terms inside the parentheses: \[ f \left( x + \frac{5}{n} \right) - f \left( x - \frac{2}{n} \right) \approx f^\prime(x) \left( \frac{5}{n} + \frac{2}{n} \right) = f^\prime(x) \cdot \frac{7}{n}. \]
Step 3: Simplify the expression for \( g_n(x) \).
Thus, we have: \[ g_n(x) = n \cdot f^\prime(x) \cdot \frac{7}{n} = 7 f^\prime(x). \]
Step 4: Take the limit as \( n \to \infty \).
Since \( g_n(x) = 7 f^\prime(x) \), and \( f^\prime(3) = 18 \), we find: \[ \lim_{n \to \infty} g_n(3) = 7 \times 18 = 126. \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is: