Let f : ℝ → ℝ be a function such that:
|f(x) − f(y)| ≤ ½ |x − y|, for all x, y ∈ ℝ
f′(x) ≥ ½, for all x ∈ ℝ, and f(1) = ½
Find the number of points of intersection of the curves:
y = f(x) and y = x² − 2x − 5
From the given:
So assume:
f(x) = (1/2)x + c
Use the point: f(1) = 1/2 ⇒ (1/2)·1 + c = 1/2 ⇒ c = 0
Therefore:
f(x) = (1/2)x
Solve:
(1/2)x = x² − 2x − 5
⇒ x² − (5/2)x − 5 = 0
⇒ 2x² − 5x − 10 = 0
⇒ x = [5 ± √(25 + 80)] / 4
⇒ x = [5 ± √105] / 4
Therefore, there are 2 real points of intersection.
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is:
The value of shunt resistance that allows only 10% of the main current through the galvanometer of resistance \( 99 \Omega \) is: