Let \( f \) be an injective map with domain x, y, z and range 1, 2, 3 such that exactly one of the following statements is correct and the remaining are false.}
[I.] \( f(x) = 1 \Rightarrow f(y) = 1, f(z) = 2 \)
[II.] \( f(x) = 2 \Rightarrow f(y) = 1, f(z) = 1 \)
[III.] \( f(x) = 1, f(y) = 1, f(z) = 2 \) Then the value of \( f(1) \) is:
We test each statement. Only one can be true.
Statement I: If \( f(x) = 1 \Rightarrow f(y) = 1, f(z) = 2 \) ⇒ not injective since \( f(x) = f(y) \)
Statement II: If \( f(x) = 2 \Rightarrow f(y) = 1, f(z) = 1 \) ⇒ Again not injective
Statement III: Claims all values: \( f(x) = 1, f(y) = 1, f(z) = 2 \) ⇒ \( f(x) = f(y) \) ⇒ not injective None of the statements support injectiveness. So none are valid under the rule that only one is true. \[ {\text{None of the above}} \]
If the domain of the function \[ f(x)=\log\left(10x^2-17x+7\right)\left(18x^2-11x+1\right) \] is $(-\infty,a)\cup(b,c)\cup(d,\infty)-\{e\}$, then $90(a+b+c+d+e)$ equals
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: