Given:
\[
F(x)=e^{-x}\int_3^x \big(3t^2+2t+4F'(t)\big)\,dt
\]
Multiply both sides by \(e^x\):
\[
e^x F(x)=\int_3^x (3t^2+2t+4F'(t))\,dt
\]
Step 1: Evaluate the integral
Split the integral:
\[
\int_3^x (3t^2+2t)\,dt + \int_3^x 4F'(t)\,dt
\]
\[
= \big[t^3+t^2\big]_3^x + 4\big[F(t)\big]_3^x
\]
\[
= (x^3+x^2)-(27+9)+4(F(x)-F(3))
\]
From the given definition:
\[
F(3)=e^{-3}\int_3^3(\cdots)\,dt=0
\]
Hence,
\[
e^xF(x)=x^3+x^2-36+4F(x)
\]
Step 2: Solve for \(F(x)\)
\[
(e^x-4)F(x)=x^3+x^2-36
\]
\[
\boxed{F(x)=\frac{x^3+x^2-36}{e^x-4}}
\]
Step 3: Differentiate \(F(x)\)
Using the quotient rule,
\[
F'(x)=\frac{(3x^2+2x)(e^x-4)-(x^3+x^2-36)e^x}{(e^x-4)^2}
\]
Step 4: Evaluate \(F'(4)\)
\[
F'(4)=\frac{(3\cdot16+2\cdot4)(e^4-4)-(64+16-36)e^4}{(e^4-4)^2}
\]
\[
=\frac{56(e^4-4)-44e^4}{(e^4-4)^2}
\]
\[
=\frac{12e^4-224}{(e^4-4)^2}
\]
---
Step 5: Compare with given form
Given:
\[
F'(4)=\frac{\alpha e^\beta-224}{(e^\beta-4)^2}
\]
Thus,
\[
\alpha=12,\quad \beta=4
\]
\[
\boxed{\alpha+\beta=16}
\]