Question:

Let \( f_1(x), f_2(x), g_1(x), g_2(x) \) be differentiable functions on \( \mathbb{R} \). Let
\[ F(x) = \begin{vmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{vmatrix}. \] Then \( F'(x) \) is equal to

Show Hint

When differentiating a 2x2 matrix determinant, apply the rule for matrix determinants and differentiate each element with respect to \( x \).
Updated On: Nov 20, 2025
  • \( f_1'(x) f_2'(x) + f_1(x) g_1'(x) \)
  • \( f_1'(x) f_2'(x) - |f_1(x) g_1'(x)| \)
  • \( f_1'(x) f_2'(x) + f_1(x) g_1'(x) \)
  • \( f_1'(x) g_2'(x) - f_2'(x) g_2'(x) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Understanding the determinant. 
We are given a determinant of a 2×2 matrix: 

F(x) = | f₁(x) f₂(x) | 
          | g₁(x) g₂(x) | 

The derivative of this determinant with respect to x is obtained by differentiating: 
F(x) = f₁(x)g₂(x) − f₂(x)g₁(x) 

Step 2: Apply the derivative rule. 
Differentiating each term gives: 
F′(x) = f₁′(x)g₂(x) + f₁(x)g₂′(x) − f₂′(x)g₁(x) − f₂(x)g₁′(x) 

Step 3: Conclusion. 
Thus, the correct answer is (C)
 

Was this answer helpful?
0
0

Questions Asked in IIT JAM MA exam

View More Questions