e-1
\(F (0)=0\)
\(F ^{\prime}( x )=2 x f ( x )= f ( x )\)
\(f ( x )= e ^{ x ^{2}+ c }\)
\(f ( x )= e ^{ x ^{2}}(\because f (0)=1)\)
\(F ( x )=\int\limits_{0}^{ x ^{2}} e ^{ x } d x\)
\(F ( x )= e ^{ x ^{2}}-1(\because F (0)=0)\)
\(\Rightarrow F (2)= e ^{4}-1\)
Therefore, the correct option is (B): \(e^4 -1\)
Let 
be a continuous function at $x=0$, then the value of $(a^2+b^2)$ is (where $[\ ]$ denotes greatest integer function).
Let 
be a continuous function at $x=0$, then the value of $(a^2+b^2)$ is (where $[\ ]$ denotes greatest integer function).
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
A function is said to be continuous at a point x = a, if
limx→a
f(x) Exists, and
limx→a
f(x) = f(a)
It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.
If the function is undefined or does not exist, then we say that the function is discontinuous.
Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions: