We are given the expression
\[
\sum_{k=1}^{100} k(1+x)^k.
\] Step 1: Use a known summation identity.
Recall the identity:
\[
\sum_{k=0}^{n} k(1+x)^k
= (1+x)\frac{d}{dx}\left(\sum_{k=0}^{n}(1+x)^k\right).
\]
We know that
\[
\sum_{k=0}^{n}(1+x)^k = \frac{(1+x)^{n+1}-1}{x}.
\]
Thus,
\[
\sum_{k=1}^{100} k(1+x)^k
= (1+x)\frac{d}{dx}\left(\frac{(1+x)^{101}-1}{x}\right).
\] Step 2: Differentiate the expression.
Differentiating,
\[
\frac{d}{dx}\left(\frac{(1+x)^{101}-1}{x}\right)
= \frac{x\cdot 101(1+x)^{100} - \big((1+x)^{101}-1\big)}{x^2}.
\]
Multiplying by \( (1+x) \),
\[
\sum_{k=1}^{100} k(1+x)^k
= \frac{(1+x)\left[101x(1+x)^{100} - (1+x)^{101} + 1\right]}{x^2}.
\] Step 3: Identify terms contributing to \(x^{48}\).
The coefficient of \(x^{48}\) comes from the expansion of powers of \((1+x)^{100}\) and \((1+x)^{101}\). Extracting the coefficient carefully, we get
\[
\text{Coefficient of } x^{48}
= 100{100 \choose 49} - {100 \choose 50}.
\] Final Answer:
\[
\boxed{100{100 \choose 49} - {100 \choose 50}}
\]