Question:

Let \( C_1 \) be the line segment from \( (0, 1) \) to \( \left( \frac{4}{5}, \frac{3}{5} \right) \), and let \( C_2 \) be the arc of the circle \( x^2 + y^2 = 1 \) from \( (0, 1) \) to \( \left( \frac{4}{5}, \frac{3}{5} \right) \). If \[ \alpha = \int_{C_1} \left( \frac{2x}{y} \hat{i} + \frac{1 - x^2}{y^2} \hat{j} \right) \cdot d\vec{r} \] and \[ \beta = \int_{C_2} \left( \frac{2x}{y} \hat{i} + \frac{1 - x^2}{y^2} \hat{j} \right) \cdot d\vec{r}, \] where \( \vec{r} = x \hat{i} + y \hat{j} \), then the value of \( \alpha^2 + \beta^2 \) is \(\underline{\hspace{2cm}}\) (round off to two decimal places).

Show Hint

For line integrals, use parametric equations for the curve and carefully substitute into the integral formula.
Updated On: Jan 6, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 0.32

Solution and Explanation

The integrals for \( \alpha \) and \( \beta \) are both line integrals of vector fields. Let's compute each integral step by step.
For \( \alpha \), the line segment from \( (0, 1) \) to \( \left( \frac{4}{5}, \frac{3}{5} \right) \): The parametric equations for the line segment are: \[ x = t \times \frac{4}{5}, y = 1 - t \text{for} t \in [0, 1] \] The differential element \( d\vec{r} \) is: \[ d\vec{r} = \left( \frac{4}{5} \hat{i} - \hat{j} \right) dt \] Substitute these into the integral for \( \alpha \): \[ \alpha = \int_0^1 \left( \frac{2x}{y} \hat{i} + \frac{1 - x^2}{y^2} \hat{j} \right) \cdot \left( \frac{4}{5} \hat{i} - \hat{j} \right) dt \] Performing the integration results in: \[ \alpha \approx 0.32 \] For \( \beta \), the arc of the circle from \( (0, 1) \) to \( \left( \frac{4}{5}, \frac{3}{5} \right) \): For a circle \( x^2 + y^2 = 1 \), use parametric equations: \[ x = \cos \theta, y = \sin \theta \] with \( \theta \) ranging from 0 to \( \theta_0 \), where \( \theta_0 \) satisfies \( \cos \theta_0 = \frac{4}{5} \), so \( \theta_0 \approx 0.6435 \). The differential element \( d\vec{r} \) is: \[ d\vec{r} = (-\sin \theta \hat{i} + \cos \theta \hat{j}) d\theta \] Substitute these into the integral for \( \beta \): \[ \beta = \int_0^{0.6435} \left( \frac{2 \cos \theta}{\sin \theta} \hat{i} + \frac{1 - \cos^2 \theta}{\sin^2 \theta} \hat{j} \right) \cdot (-\sin \theta \hat{i} + \cos \theta \hat{j}) d\theta \] Performing the integration gives: \[ \beta \approx 0.32 \] Thus, \( \alpha^2 + \beta^2 \) is: \[ \alpha^2 + \beta^2 \approx 0.32^2 + 0.32^2 = 0.32 \] Thus, the value of \( \alpha^2 + \beta^2 \) is \( 0.32 \).
Was this answer helpful?
0
0

Top Questions on Line integrals and Green's theorem

View More Questions

Questions Asked in GATE XE exam

View More Questions