Step 1: Identify \(P(x,y)\) and \(Q(x,y)\) for Green’s theorem.
Set
\[
P(x,y)=2y^{2}+2xy+4y,\qquad Q(x,y)=x^{2}+4xy+8x.
\]
By Green’s theorem,
\[
\oint_{C}P\,dx+Q\,dy=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\,dA,
\]
where \(D\) is the region enclosed by \(C\).
Step 2: Compute the curl term.
\[
\frac{\partial Q}{\partial x}=2x+4y+8,\qquad
\frac{\partial P}{\partial y}=4y+2x+4.
\]
Hence
\[
\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}
=(2x+4y+8)-(4y+2x+4)=4.
\]
So the integral reduces to
\[
\oint_C P\,dx+Q\,dy=\iint_D 4\,dA=4\cdot \text{Area}(D).
\]
Step 3: Find the area of the region \(D\).
The curves intersect where \(y=2x^{2}\) and \(y^{2}=4x\).
Substitute \(y=2x^{2}\) into \(y^{2}=4x\):
\[
(2x^{2})^{2}=4x\ \Rightarrow\ 4x^{4}=4x\ \Rightarrow\ x(x^{3}-1)=0
\Rightarrow x=0 \text{ or } x=1.
\]
Thus intersection points are \((0,0)\) and \((1,2)\).
For \(0\le x\le 1\), the upper curve is \(y=2\sqrt{x}\) (from \(y^{2}=4x\)) and the lower curve is \(y=2x^{2}\).
Therefore,
\[
\text{Area}(D)=\int_{0}^{1}\big(2\sqrt{x}-2x^{2}\big)\,dx
=2\!\left[\frac{2}{3}-\frac{1}{3}\right]
=\frac{2}{3}.
\]
Step 4: Evaluate the line integral.
\[
\oint_C P\,dx+Q\,dy=4\cdot \text{Area}(D)=4\cdot \frac{2}{3}=\frac{8}{3}.
\]
Final Answer: \(\boxed{\dfrac{8}{3}}\)