Step 1: For a non-trivial solution, the determinant of the coefficients must be zero.
Step 2:

Step 3: This is a circulant determinant: $-(\alpha+\beta+\gamma)(\alpha^2+\beta^2+\gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) = 0$.
Step 4: From $x^3 + ax^2 + bx + c = 0$: $\alpha+\beta+\gamma = -a$ and $\alpha\beta+\beta\gamma+\gamma\alpha = b$.
Step 5: Case 1: $\alpha+\beta+\gamma = 0 \implies -a = 0$ (but $a \neq 0$).
Step 6: Case 2: $\alpha^2+\beta^2+\gamma^2 - (\alpha\beta + \beta\gamma + \gamma\alpha) = 0$. $(\alpha+\beta+\gamma)^2 - 3(\alpha\beta+\beta\gamma+\gamma\alpha) = 0 \implies (-a)^2 - 3b = 0 \implies a^2 = 3b$.
Step 7: $a^2/b = 3$.


