Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that
Let be a continuous function at $x=0$, then the value of $(a^2+b^2)$ is (where $[\ ]$ denotes greatest integer function).