We use the oneβsample proportion z-test statistic:
\[ z = \frac{\hat{\pi}-\pi_0}{\sqrt{\pi_0(1-\pi_0)/n}} \]
Given:
\[ \hat{\pi} = 0.64,\quad \pi_0 = 0.58,\quad n = 100. \]
Step 1 β Compute standard error:
\[ SE = \sqrt{\frac{0.58(1-0.58)}{100}} \] \[ = \sqrt{\frac{0.58 \cdot 0.42}{100}} \] \[ = \sqrt{\frac{0.2436}{100}} \] \[ = \sqrt{0.002436} = 0.04935. \]
Step 2 β Compute test statistic:
\[ z = \frac{0.64 - 0.58}{0.04935} \] \[ = \frac{0.06}{0.04935} \] \[ = 1.216 \approx 1.20. \]
Final Answer: 1.20
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |