Let \( X_1, X_2 \) be a random sample from a population having probability density function
\[ f_{\theta}(x) = \begin{cases} e^{(x-\theta)} & \text{if } -\infty < x \leq \theta, \\ 0 & \text{otherwise}, \end{cases} \] where \( \theta \in \mathbb{R} \) is an unknown parameter. Consider testing \( H_0: \theta \geq 0 \) against \( H_1: \theta < 0 \) at level \( \alpha = 0.09 \). Let \( \beta(\theta) \) denote the power function of a uniformly most powerful test. Then \( \beta(\log_e 0.36) \) equals ________ (rounded off to two decimal places).
Let \( X_1, X_2 \) be a random sample from a distribution having probability density function
The P-V diagram of an engine is shown in the figure below. The temperatures at points 1, 2, 3 and 4 are T1, T2, T3 and T4, respectively. 1β2 and 3β4 are adiabatic processes, and 2β3 and 4β1 are isochoric processes
Identify the correct statement(s).
[Ξ³ is the ratio of specific heats Cp (at constant P) and Cv (at constant V)]