Let \( X \) be a random variable with the probability density function (PDF) given as:
\(f(x) = \begin{cases} x^2 & \text{if } 0 < x < 2, \\ 0 & \text{otherwise}. \end{cases}\)
The expected value of \( \ln(2X) \) is given by:
\(E[\ln(2X)] = \int_0^2 \ln(2x) \cdot f(x) \, dx\)
Expanding \( \ln(2x) \):
\(\ln(2x) = \ln 2 + \ln x\)
Thus, the integral becomes:
\(E[\ln(2X)] = \int_0^2 (\ln 2 + \ln x) \cdot x^2 \, dx\)
This can be split into two integrals:
\(E[\ln(2X)] = \ln 2 \int_0^2 x^2 \, dx + \int_0^2 \ln(x) \cdot x^2 \, dx\)
Using known results for the integrals:
\(\int_0^2 x^2 \, dx = \frac{8}{3}, \quad \int_0^2 \ln(x) \cdot x^2 \, dx = \frac{-2}{3}\)
We get:
\(E[\ln(2X)] = \ln 2 \cdot \frac{8}{3} - \frac{2}{3}\)
The second moment is:
\(E[(\ln(2X))^2] = \int_0^2 (\ln(2x))^2 \cdot x^2 \, dx\)
Expanding \( (\ln(2x))^2 \):
\((\ln(2x))^2 = (\ln 2)^2 + 2 \ln 2 \ln x + (\ln x)^2\)
Thus, the integral becomes:
\(E[(\ln(2X))^2] = (\ln 2)^2 \int_0^2 x^2 \, dx + 2 \ln 2 \int_0^2 \ln x \cdot x^2 \, dx + \int_0^2 (\ln x)^2 \cdot x^2 \, dx\)
Using known results:
\(\int_0^2 x^2 \, dx = \frac{8}{3}, \quad \int_0^2 \ln x \cdot x^2 \, dx = \frac{-2}{3}, \quad \int_0^2 (\ln x)^2 \cdot x^2 \, dx = \frac{4}{3}\)
We get:
\(E[(\ln(2X))^2] = (\ln 2)^2 \cdot \frac{8}{3} + 2 \ln 2 \cdot \frac{-2}{3} + \frac{4}{3}\)
The variance is:
\(\text{Var}(\ln(2X)) = E[(\ln(2X))^2] - (E[\ln(2X)])^2\)
After simplification, we get:
\(\text{Var}(\ln(2X)) = 0.25\)
The variance is \( \boxed{0.25} \).