Question:

Let \(\begin{array}{l}A=\begin{bmatrix}1 & -1 \\2 & \alpha \\\end{bmatrix}\ \text{and}\ B=\begin{bmatrix}\beta & 1 \\1 & 0 \\\end{bmatrix},\alpha, \beta \in R\end{array}\)
Let \(α1\) be the value of α which satisfies
\(\begin{array}{l}(A + B)^2 =A^2 + \begin{bmatrix}2 & 2 \\2 & 2 \\\end{bmatrix}\end{array}\)
and \(α2\) be the value of α which satisfies
\(\begin{array}{l}\left(A + B\right)^2 = B^2.\end{array}\)
Then \(|α1 – α2|\) is equal to _________.

Updated On: Apr 28, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\begin{array}{l}\left(A + B\right)^2 = A^2 + B^2 + AB + BA\end{array}\)
\(\begin{array}{l}=A^2 + \begin{bmatrix}2 & 2 \\2 & 2 \\\end{bmatrix}\end{array}\)
\(\begin{array}{l}\therefore B^2 + AB + BA =\begin{bmatrix}2 & 2 \\2 & 2 \\\end{bmatrix}\ \ \ …(1)\end{array}\)
\(\begin{array}{l}AB =\begin{bmatrix}1 & -1 \\2 & \alpha \\\end{bmatrix}\begin{bmatrix}\beta & 1 \\1 & 0 \\\end{bmatrix}= \begin{bmatrix}\beta-1 & 1 \\\alpha + 2\beta & 2 \\\end{bmatrix}\end{array}\)
\(\begin{array}{l}BA = \begin{bmatrix}\beta & 1 \\1 & 0 \\\end{bmatrix}\begin{bmatrix}1 & -1 \\2 & \alpha \\\end{bmatrix}= \begin{bmatrix}\beta+2 & \alpha – \beta \\1 & -1 \\\end{bmatrix}\end{array}\)
\(\begin{array}{l}B^2 = \begin{bmatrix}\beta & 1 \\1 & 0 \\\end{bmatrix}\begin{bmatrix}\beta & 1 \\1 & 0 \\\end{bmatrix}= \begin{bmatrix}\beta^2 + 1 & \beta \\\beta & 1 \\\end{bmatrix}\end{array}\)
By (1) we get
\(\begin{array}{l}\begin{bmatrix} \beta^2 + 2\beta + 2& \alpha + 1 \\\alpha + 3\beta + 1 & 2 \\\end{bmatrix}=\begin{bmatrix}2 & 2 \\2 & 2 \\\end{bmatrix}\end{array}\)
\(\begin{array}{l}\therefore \alpha = 1, \beta = 0 , \Rightarrow \alpha_ 1 = 1\end{array}\), Similarly If A2 + AB + BA = 0 then
\(\begin{array}{l}\left(A^2 = \begin{bmatrix} 1& -1 \\2 & \alpha \\\end{bmatrix}\begin{bmatrix}1 & -1 \\2 & \alpha \\\end{bmatrix}=\begin{bmatrix}-1 & -1-\alpha \\2+2\alpha & \alpha^2-2 \\\end{bmatrix}\right)\end{array}\)
\(\begin{array}{l}\begin{bmatrix} 2\beta& \alpha – \beta + 1 -1 -\alpha \\\alpha + 2\beta + 1 +2 + 2\alpha & \alpha^2-2+1 \\\end{bmatrix}=\begin{bmatrix}0 & 0 \\0 & 0 \\\end{bmatrix}\end{array}\)
\(\begin{array}{l}\Rightarrow \beta = 0 ~\text{and}~ \alpha = – 1 \Rightarrow \alpha_2 = – 1\end{array}\)
\(\begin{array}{l}\therefore |\alpha_1 – \alpha_2|=|2|=2\end{array}\)
Was this answer helpful?
0
1

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.