\[
8^{2\sin3x}\cdot4^{4\cos3x}
= (2^3)^{2\sin3x}(2^2)^{4\cos3x}
= 2^{6\sin3x+8\cos3x}
\]
Let
\[
E = 6\sin3x + 8\cos3x
\]
For $a\sin\theta + b\cos\theta$,
\[
-\sqrt{a^2+b^2} \le E \le \sqrt{a^2+b^2}
\]
\[
\sqrt{6^2+8^2} = 10
\]
Hence,
\[
\alpha = 2^{10}, \qquad \beta = 2^{-10}
\]
\[
\alpha^{1/5} = 4, \qquad \beta^{1/5} = \frac14
\]
The quadratic equation is $8x^2+bx+c=0$.
Sum of roots:
\[
4+\frac14=\frac{17}{4}=-\frac{b}{8}
\Rightarrow b=-34
\]
Product of roots:
\[
1=\frac{c}{8}\Rightarrow c=8
\]
\[
c-b = 8-(-34)=42
\]
\[
\boxed{42}
\]