Question:

Let a1, a2,..., an be fixed real numbers and define a function f(x)=(x-a1)(x-a2)...(x-an).
What is \(\lim_{x\rightarrow a_1}\) f(x)? 
For some a ≠ a1, a2 .....an, Compute \(\lim_{x\rightarrow a}\) f(x).

Updated On: Oct 25, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The given function is f(x) = (x − a1) ( x − a2)... ( x − an)
\(\lim_{x\rightarrow a_1}\) f(x)= \(\lim_{x\rightarrow a_1}\) [(x-a1)(x − a2).....(x − an)]
=[\(\lim_{x\rightarrow a_1}\) (x − a1) ][\(\lim_{x\rightarrow a_1}\)(x − a2)]..... [\(\lim_{x\rightarrow a_1}\) (x-an)]
=(a1-a1)(a1-a2)....(a1 -an) = 0
\(\lim_{x\rightarrow a_1}\) f(x)=0
Now, \(\lim_{x\rightarrow a}\) f(x)= \(\lim_{x\rightarrow a}\)[(x − a1)(x-a2)...(x-an)]
= [\(\lim_{x\rightarrow (x-a_1)}\)][\(\lim_{x\rightarrow a}\) (x-a2)]...\(\lim_{x\rightarrow a}\)(x-an)]
=(a-a1) (a-a2)....(a-an)
\(\lim_{x\rightarrow a}\) f(x)=(a-a1)(a-a2)...(a-an)
Was this answer helpful?
0
0