Let \(A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}\)and let AT denote the transpose of A. Let \(u=\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}\) and \(v=\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}\)be column vectors with entries in \(\R\) such that \(u^2_1+u_2^2=1\) and \(v_1^2+v_2^2+v^2_3=1\). Suppose \(Au=\sqrt2v\) and \(A^Tv=\sqrt2u.\) Then |\(𝑢1 + 2 \sqrt2 𝑣_1\)| is equal to _________. (Rounded off to two decimal places)