We are given
\[A=\begin{pmatrix} 1 & 1 \\[6pt] 0 & 1 \\[6pt] -1 & 1 \end{pmatrix},\qquad u=\begin{pmatrix} u_1 \\ u_2 \end{pmatrix},\qquad v=\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix},\]
with the conditions
\[u_1^2+u_2^2 = 1,\qquad v_1^2 + v_2^2 + v_3^2 = 1,\]
\[Au = \sqrt{2}\, v,\qquad A^T v = \sqrt{2}\, u.\]
Step 1: Compute \(A^T A\)
\[A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}\]
\[A^T A = \begin{pmatrix} 1^2 + 0^2 + (-1)^2 & 1\cdot 1 + 0\cdot 1 + (-1)\cdot 1 \\[4pt] 1\cdot 1 + 1\cdot 0 + 1\cdot (-1) & 1^2 + 1^2 + 1^2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.\]
Thus the eigenvalues are
\[\lambda_1 = 2,\qquad \lambda_2 = 3,\]
so the singular values are
\[\sigma_1 = \sqrt{2},\qquad \sigma_2 = \sqrt{3}.\]
Since the problem specifies \(\sigma=\sqrt{2}\), the associated eigenvector of \(A^T A\) is
\[u = (\pm 1,\, 0)^T.\]
Step 2: Compute the corresponding \(v\)
\[Au = \pm \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.\]
Since \(Au = \sqrt{2}\, v\),
\[v = \pm \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.\]
Hence,
\[v_1 = \pm \frac{1}{\sqrt{2}},\]
with the same sign as \(u_1\).
Step 3: Compute the required expression
\[\left| u_1 + 2\sqrt{2}\, v_1 \right|.\]
Substitute \(u_1 = \pm 1\), \(v_1 = \pm \frac{1}{\sqrt{2}}\) with matching signs:
\[u_1 + 2\sqrt{2}\left(\frac{1}{\sqrt{2}}\right) = u_1 + 2.\]
If \(u_1 = 1\): \(1 + 2 = 3\)
If \(u_1 = -1\): \(-1 - 2 = -3\), whose absolute value is \(3\)
Thus,
\[\boxed{3.00}\]