Let \[ A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{pmatrix} \] and let \( B = \frac{1}{|A|} A \). Then the value of \( |B| \) is equal to:
Given matrix \( A \):
\[ A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{pmatrix} \]
We are asked to find the determinant of matrix \( B \), which is given as:
\[ B = \frac{1}{|A|} A \]
The determinant of a scalar multiple of a matrix is the scalar raised to the power of the size of the matrix times the determinant of the original matrix. Therefore,
\[ |B| = \left|\frac{1}{|A|} A\right| = \frac{1}{|A|^3} |A| \]
Thus, \( |B| = \frac{1}{|A|^2} \).
Now, let's calculate the determinant of matrix \( A \):
\[ |A| = \begin{vmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{vmatrix} \]
We use the cofactor expansion along the first row:
\[ |A| = 2 \begin{vmatrix} 0 & 2 \\ -2 & -1 \end{vmatrix} - (-1) \begin{vmatrix} -1 & 2 \\ 1 & -1 \end{vmatrix} + 1 \begin{vmatrix} -1 & 0 \\ 1 & -2 \end{vmatrix} \]
Calculating the 2x2 determinants:
\[ \begin{vmatrix} 0 & 2 \\ -2 & -1 \end{vmatrix} = (0)(-1) - (2)(-2) = 4 \]
\[ \begin{vmatrix} -1 & 2 \\ 1 & -1 \end{vmatrix} = (-1)(-1) - (2)(1) = 1 - 2 = -1 \]
\[ \begin{vmatrix} -1 & 0 \\ 1 & -2 \end{vmatrix} = (-1)(-2) - (0)(1) = 2 \]
Substitute these into the cofactor expansion:
\[ |A| = 2(4) + 1(-1) + 1(2) = 8 - 1 + 2 = 9 \]
Thus, \( |A| = 9 \).
Now, using the formula for \( |B| \):
\[ |B| = \frac{1}{|A|^2} = \frac{1}{9^2} = \frac{1}{81} \]
Thus, the value of \( |B| \) is \( \frac{1}{81} \).
Thus, the correct answer is option (C), \( \frac{1}{81} \).
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:
The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: