Step 1: Understanding the Concept:
We are given a matrix equation involving a matrix \( A \), its transpose \( A^T \), and the identity matrix \( I \). We need to solve this equation to find the general value of the angle \( \theta \).
Step 2: Key Formula or Approach:
1. Find the transpose of matrix \( A \), \( A^T \).
2. Calculate the sum \( A^T + A \).
3. Set this sum equal to the identity matrix \( I \).
4. Solve the resulting trigonometric equation for \( \theta \).
Step 3: Detailed Explanation:
The given matrix is \( A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \).
First, find the transpose of \( A \), which is obtained by interchanging rows and columns:
\[ A^T = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}. \]
Now, add \( A^T \) and \( A \):
\[ A^T + A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \] \[ A^T + A = \begin{bmatrix} \cos\theta + \cos\theta & \sin\theta - \sin\theta \\ -\sin\theta + \sin\theta & \cos\theta + \cos\theta \end{bmatrix} = \begin{bmatrix} 2\cos\theta & 0 \\ 0 & 2\cos\theta \end{bmatrix}. \]
We are given that \( A^T + A = I \):
\[ \begin{bmatrix} 2\cos\theta & 0 \\ 0 & 2\cos\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \]
By equating the corresponding elements of the matrices, we get the equation:
\[ 2\cos\theta = 1 \] \[ \cos\theta = \frac{1}{2} \]
The principal value for \( \theta \) is \( \frac{\pi}{3} \).
The general solution for \( \cos\theta = \cos\alpha \) is \( \theta = 2n\pi \pm \alpha \), where \( n \) is an integer.
So, the general solution for \( \cos\theta = \frac{1}{2} \) is \( \theta = 2n\pi \pm \frac{\pi}{3} \), where \( n \in \mathbb{Z} \).
Looking at the options provided, the option \( \theta = 2n\pi + \frac{\pi}{3} \) is one part of the general solution. It is the most appropriate choice among the given options.
Step 4: Final Answer:
The value of \( \theta \) is given by \( \theta = 2n\pi + \frac{\pi}{3} \), where \( n \in \mathbb{Z} \).
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |