Solution:
Given that \( A \) is a symmetric matrix and \( B \) is a skew-symmetric matrix, we know the following properties:
- A symmetric matrix satisfies \( A^T = A \).
- A skew-symmetric matrix satisfies \( B^T = -B \).
We are given that:
\[
A + B = \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}
\]
We need to find \( A - B \).
Let's define:
\[
A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}, \quad B = \begin{pmatrix} 0 & e \\ -e & 0 \end{pmatrix}
\]
Since \( A \) is symmetric, the off-diagonal elements are equal, and for \( B \), the diagonal elements are zero, and the off-diagonal elements are negatives of each other.
Now, from the equation \( A + B = \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix} \), we can write:
\[
\begin{pmatrix} a & b \\ b & d \end{pmatrix} + \begin{pmatrix} 0 & e \\ -e & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}
\]
This gives us the following system of equations:
1. \( a = 1 \)
2. \( b + e = 3 \)
3. \( b - e = -2 \)
4. \( d = 5 \)
From equations 2 and 3, we can solve for \( b \) and \( e \):
\[
b + e = 3 \quad \text{and} \quad b - e = -2
\]
Adding these two equations gives:
\[
2b = 1 \quad \Rightarrow \quad b = \frac{1}{2}
\]
Substitute \( b = \frac{1}{2} \) into \( b + e = 3 \):
\[
\frac{1}{2} + e = 3 \quad \Rightarrow \quad e = \frac{5}{2}
\]
Now, we can find \( A - B \):
\[
A - B = \begin{pmatrix} a & b \\ b & d \end{pmatrix} - \begin{pmatrix} 0 & e \\ -e & 0 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 5 \end{pmatrix} - \begin{pmatrix} 0 & \frac{5}{2} \\ -\frac{5}{2} & 0 \end{pmatrix}
\]
This gives:
\[
A - B = \begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix}
\]
Thus, the correct answer is option (D), \( \begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix} \).