If aa is the greatest term in the sequence \(a_n=\frac{n^3}{n^4+147},n=1,2,3,...,\) then a is equal to______________.
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
A set of numbers that have been arranged or sorted in a definite order is called a sequence. The terms in a series mention the numbers in the sequence, and each term is distinguished or prominent from the others by a common difference. The end of the sequence is frequently represented by three linked dots, which specifies that the sequence is not broken and that it will continue further.
Read More: Sequence and Series
There are four types of sequences such as: