Question:

Let A+B=[414144]A+B=\begin{bmatrix} 4&1&4\\1&4&4 \end{bmatrix}and B=[102130]B=\begin{bmatrix} 1&0&-2\\-1&3&0 \end{bmatrix}, then A=

Updated On: Jun 10, 2024
  • [312034]\begin{bmatrix} 3&1&2\\0&3&4 \end{bmatrix}
  • [512074]\begin{bmatrix} 5&1&2\\0&7&4 \end{bmatrix}
  • [312214]\begin{bmatrix} 3&-1&-2\\2&1&4 \end{bmatrix}
  • [516214]\begin{bmatrix} 5&1&6\\2&1&4 \end{bmatrix}
  • [316214]\begin{bmatrix} 3&1&6\\2&1&4 \end{bmatrix}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is

Solution and Explanation

The correct option is (E): [316214]\begin{bmatrix} 3&1&6\\2&1&4 \end{bmatrix}
Was this answer helpful?
0
0

Top Questions on Matrices

View More Questions

Questions Asked in KEAM exam

View More Questions