We are given the equation \(A + B = \begin{bmatrix} 4 & 1 & 4 \\ 1 & 4 & 4 \end{bmatrix}\) and the matrix \(B = \begin{bmatrix} 1 & 0 & -2 \\ -1 & 3 & 0 \end{bmatrix}\). We need to find matrix \( A \).
To solve for \( A \), we subtract matrix \( B \) from both sides of the equation:
\(A = \begin{bmatrix} 4 & 1 & 4 \\ 1 & 4 & 4 \end{bmatrix} - \begin{bmatrix} 1 & 0 & -2 \\ -1 & 3 & 0 \end{bmatrix}\)
Subtracting corresponding elements of the matrices:
\(A = \begin{bmatrix} 4-1 & 1-0 & 4 - (-2) \\ 1 - (-1) & 4 - 3 & 4 - 0 \end{bmatrix}\)
\(A = \begin{bmatrix} 3 & 1 & 6 \\ 2 & 1 & 4 \end{bmatrix}\)
The matrix \( A \) is \( \begin{bmatrix} 3 & 1 & 6 \\ 2 & 1 & 4 \end{bmatrix} \).