Step 1: Find Points of Local Maxima and Minima
We need to find the critical points of \(f(x)\) by setting its first derivative to zero.
\[ f(x) = 2x^3 - 3x^2 - 12x \]
\[ f'(x) = 6x^2 - 6x - 12 = 6(x^2 - x - 2) \]
Set \(f'(x) = 0\):
\[ 6(x-2)(x+1) = 0 \]
The critical points are \(x=2\) and \(x=-1\).
To determine which is a maximum and which is a minimum, we use the second derivative test.
\[ f''(x) = 12x - 6 \]
At \(x=-1\): \(f''(-1) = 12(-1) - 6 = -18<0\). This is a point of local maximum. So, \(a = -1\).
At \(x=2\): \(f''(2) = 12(2) - 6 = 18>0\). This is a point of local minimum. So, \(b = 2\).
Step 2: Set up the Area Integral
We need to find the area A bounded by \(y=f(x)\), the x-axis, \(x=a=-1\), and \(x=b=2\).
\[ A = \int_{-1}^{2} |f(x)| dx = \int_{-1}^{2} |2x^3 - 3x^2 - 12x| dx \]
We need to find the sign of \(f(x)\) in the interval \([-1, 2]\). Let's find the roots of \(f(x)=0\).
\[ f(x) = x(2x^2 - 3x - 12) = 0 \]
The roots are \(x=0\) and \(x = \frac{3 \pm \sqrt{9 - 4(2)(-12)}}{4} = \frac{3 \pm \sqrt{105}}{4}\).
\(\sqrt{105}\) is slightly more than 10. Let's say 10.2.
Roots are approx \(\frac{3 \pm 10.2}{4}\), which are \(3.3\) and \(-1.8\).
The roots are \(x \approx -1.8\), \(x=0\), \(x \approx 3.3\).
In the interval \([-1, 0]\), let's test \(x=-0.5\). \(f(-0.5) = (-)(+)(-)=+\). So \(f(x) \ge 0\).
In the interval \([0, 2]\), let's test \(x=1\). \(f(1) = 2-3-12 = -13<0\). So \(f(x) \le 0\).
The integral must be split at \(x=0\).
\[ A = \int_{-1}^{0} (2x^3 - 3x^2 - 12x) dx + \int_{0}^{2} -(2x^3 - 3x^2 - 12x) dx \]
Step 3: Evaluate the Integral
The antiderivative of \(f(x)\) is \(F(x) = \int (2x^3 - 3x^2 - 12x) dx = \frac{2x^4}{4} - \frac{3x^3}{3} - \frac{12x^2}{2} = \frac{x^4}{2} - x^3 - 6x^2\).
\[ A = [F(x)]_{-1}^{0} - [F(x)]_{0}^{2} \]
\[ A = (F(0) - F(-1)) - (F(2) - F(0)) = 2F(0) - F(-1) - F(2) \]
\(F(0) = 0\).
\(F(-1) = \frac{(-1)^4}{2} - (-1)^3 - 6(-1)^2 = \frac{1}{2} + 1 - 6 = -\frac{9}{2}\).
\(F(2) = \frac{(2)^4}{2} - (2)^3 - 6(2)^2 = 8 - 8 - 24 = -24\).
\[ A = 2(0) - (-\frac{9}{2}) - (-24) = \frac{9}{2} + 24 = \frac{9+48}{2} = \frac{57}{2} \]
Step 4: Final Answer
We need to find the value of 4A.
\[ 4A = 4 \times \frac{57}{2} = 2 \times 57 = 114 \]