Step 1: Use the formula for the area of a triangle.
The area of a triangle with vertices \((x_1, y_1), (x_2, y_2), (x_3, y_3)\) is given by:
Area = \( \frac{1}{2} |x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)| \)
Given vertices are A(a, 0), B(b, 2b+1), and C(0, b). The area is 1.
\[ 1 = \frac{1}{2} |a((2b+1) - b) + b(b - 0) + 0(0 - (2b+1))| \]
\[ 2 = |a(b+1) + b^2| \]
Step 2: Solve the equation for a.
The absolute value equation gives two possibilities:
Case 1: \(a(b+1) + b^2 = 2\)
\[ a(b+1) = 2 - b^2 \]
\[ a_1 = \frac{2 - b^2}{b+1} \]
Case 2: \(a(b+1) + b^2 = -2\)
\[ a(b+1) = -2 - b^2 \]
\[ a_2 = \frac{-2 - b^2}{b+1} \]
These are the two possible values of a.
Step 3: Find the sum of all possible values of a.
Sum = \(a_1 + a_2\)
\[ \text{Sum} = \frac{2 - b^2}{b+1} + \frac{-2 - b^2}{b+1} \]
\[ \text{Sum} = \frac{(2 - b^2) + (-2 - b^2)}{b+1} = \frac{2 - b^2 - 2 - b^2}{b+1} = \frac{-2b^2}{b+1} \]