Step 1: Coordinates of points
\[
A(-2,0),\quad B(2,0)
\]
\[
P(2\cos\alpha,\,2\sin\alpha),\quad
Q(2\cos\beta,\,2\sin\beta),\quad \alpha-\beta=\frac{\pi}{2}
\]
Thus,
\[
\cos\beta=\sin\alpha,\quad \sin\beta=-\cos\alpha.
\]
Step 2: Equations of lines
Line \(AP\):
\[
\frac{y-0}{x+2}=\frac{2\sin\alpha}{2\cos\alpha+2}
\;\Rightarrow\;
y=\frac{\sin\alpha}{1+\cos\alpha}(x+2)
\]
Line \(BQ\):
\[
\frac{y-0}{x-2}=\frac{2\sin\beta}{2\cos\beta-2}
=\frac{-2\cos\alpha}{2\sin\alpha-2}
\;\Rightarrow\;
y=\frac{-\cos\alpha}{\sin\alpha-1}(x-2)
\]
Step 3: Intersection point
Let the intersection be \((x,y)\).
Equating the two expressions for \(y\) and simplifying eliminates \(\alpha\), yielding:
\[
x^2+y^2-4y-4=0
\]
Final Answer:
\[
\boxed{x^2+y^2-4y-4=0}
\]