Given:
\[ P \equiv \left( \frac{\alpha - 2}{2}, \frac{\beta - 1}{2} \right) \equiv \left( \frac{\gamma + 1}{2}, \frac{\delta}{2} \right) \]
\[ \frac{\alpha - 2}{2} = \frac{\gamma + 1}{2} \quad \text{and} \quad \frac{\beta - 1}{2} = \frac{\delta}{2} \]
\[ \Rightarrow \alpha - \gamma = 3 \quad \text{....(1)} \] \[ \beta - \delta = 1 \quad \text{....(2)} \]
Step 1: Point \((\gamma, \delta)\) lies on the line \(3x - 2y = 6\)
\[ 3\gamma - 2\delta = 6 \quad \text{....(3)} \]
Step 2: Point \((\alpha, \beta)\) lies on the line \(2x - y = 5\)
\[ 2\alpha - \beta = 5 \quad \text{....(4)} \]
Step 3: Solving equations (1), (2), (3), and (4)
\[ \alpha = -3, \quad \beta = -11, \quad \gamma = -6, \quad \delta = -12 \]
Step 4:
\[ |\alpha + \beta + \gamma + \delta| = |-3 - 11 - 6 - 12| = 32 \]
Final Answer:
\[ \boxed{32} \]
Given that \(A(-2, -1)\) and \(B(1, 0)\) are two vertices of the parallelogram and \(C(\alpha, \beta)\) and \(D(\gamma, \delta)\) are the other two vertices.
Since \(P\) is the midpoint of diagonals \(AC\) and \(BD\), we have:
\[ P = \left(\frac{\alpha - 2}{2}, \frac{\beta - 1}{2}\right) = \left(\frac{\gamma + 1}{2}, \frac{\delta}{2}\right) \]
Equating coordinates:
\[ \frac{\alpha - 2}{2} = \frac{\gamma + 1}{2} \quad \text{and} \quad \frac{\beta - 1}{2} = \frac{\delta}{2} \]
Simplifying:
\[ \alpha - 2 = \gamma + 1 \implies \alpha - \gamma = 3 \quad (1) \] \[ \beta - 1 = \delta \implies \beta - \delta = 1 \quad (2) \]
Given that \((\gamma, \delta)\) lies on the line \(3x - 2y = 6\):
\[ 3\gamma - 2\delta = 6 \quad (3) \]
Also, \((\alpha, \beta)\) lies on the line \(2x - y = 5\):
\[ 2\alpha - \beta = 5 \quad (4) \]
Solving equations (1), (2), (3), and (4) simultaneously: From (1) and (2):
\[ \alpha = \gamma + 3, \quad \beta = \delta + 1 \]
Substitute these values into (3) and (4):
\[ 3\gamma - 2\delta = 6 \] \[ 2(\gamma + 3) - (\delta + 1) = 5 \]
Simplifying:
\[ 3\gamma - 2\delta = 6 \] \[ 2\gamma + 6 - \delta - 1 = 5 \implies 2\gamma - \delta = 0 \]
Solving these equations:
\[ \gamma = -6, \quad \delta = -12, \quad \alpha = -3, \quad \beta = -11 \]
Thus, the value of \(|\alpha + \beta + \gamma + \delta|\) is:
\[ |\alpha + \beta + \gamma + \delta| = | -3 + (-11) + (-6) + (-12)| = | -32| = 32 \]
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
