Given:
\[ P \equiv \left( \frac{\alpha - 2}{2}, \frac{\beta - 1}{2} \right) \equiv \left( \frac{\gamma + 1}{2}, \frac{\delta}{2} \right) \]
\[ \frac{\alpha - 2}{2} = \frac{\gamma + 1}{2} \quad \text{and} \quad \frac{\beta - 1}{2} = \frac{\delta}{2} \]
\[ \Rightarrow \alpha - \gamma = 3 \quad \text{....(1)} \] \[ \beta - \delta = 1 \quad \text{....(2)} \]
Step 1: Point \((\gamma, \delta)\) lies on the line \(3x - 2y = 6\)
\[ 3\gamma - 2\delta = 6 \quad \text{....(3)} \]
Step 2: Point \((\alpha, \beta)\) lies on the line \(2x - y = 5\)
\[ 2\alpha - \beta = 5 \quad \text{....(4)} \]
Step 3: Solving equations (1), (2), (3), and (4)
\[ \alpha = -3, \quad \beta = -11, \quad \gamma = -6, \quad \delta = -12 \]
Step 4:
\[ |\alpha + \beta + \gamma + \delta| = |-3 - 11 - 6 - 12| = 32 \]
Final Answer:
\[ \boxed{32} \]
Given that \(A(-2, -1)\) and \(B(1, 0)\) are two vertices of the parallelogram and \(C(\alpha, \beta)\) and \(D(\gamma, \delta)\) are the other two vertices.
Since \(P\) is the midpoint of diagonals \(AC\) and \(BD\), we have:
\[ P = \left(\frac{\alpha - 2}{2}, \frac{\beta - 1}{2}\right) = \left(\frac{\gamma + 1}{2}, \frac{\delta}{2}\right) \]
Equating coordinates:
\[ \frac{\alpha - 2}{2} = \frac{\gamma + 1}{2} \quad \text{and} \quad \frac{\beta - 1}{2} = \frac{\delta}{2} \]
Simplifying:
\[ \alpha - 2 = \gamma + 1 \implies \alpha - \gamma = 3 \quad (1) \] \[ \beta - 1 = \delta \implies \beta - \delta = 1 \quad (2) \]
Given that \((\gamma, \delta)\) lies on the line \(3x - 2y = 6\):
\[ 3\gamma - 2\delta = 6 \quad (3) \]
Also, \((\alpha, \beta)\) lies on the line \(2x - y = 5\):
\[ 2\alpha - \beta = 5 \quad (4) \]
Solving equations (1), (2), (3), and (4) simultaneously: From (1) and (2):
\[ \alpha = \gamma + 3, \quad \beta = \delta + 1 \]
Substitute these values into (3) and (4):
\[ 3\gamma - 2\delta = 6 \] \[ 2(\gamma + 3) - (\delta + 1) = 5 \]
Simplifying:
\[ 3\gamma - 2\delta = 6 \] \[ 2\gamma + 6 - \delta - 1 = 5 \implies 2\gamma - \delta = 0 \]
Solving these equations:
\[ \gamma = -6, \quad \delta = -12, \quad \alpha = -3, \quad \beta = -11 \]
Thus, the value of \(|\alpha + \beta + \gamma + \delta|\) is:
\[ |\alpha + \beta + \gamma + \delta| = | -3 + (-11) + (-6) + (-12)| = | -32| = 32 \]
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
