Given \(a_1=3\), it follows that \(d=a_2−a_1=7−3=4\) and \(a_2=7. \)
The sum \(a_1+a_2+a_3+…+a_{3n}=1830\).
Using the formula for the sum of an arithmetic series,
\(S_n=\frac{n}{2}[2a_1+(n−1)d],\)
we get \(1830=3n^2[2×3+(3n−1)×4]. \)
Simplifying this equation, we get \(12n^2+2n−610=0, \) which factors to \((6n+61)(n−10)=0. \)
Since n cannot be negative, \(n=10.\)
Substituting \(n=10\) into \(m(3+7+11+…+39)>1830, \)
we get \(m×10^2[2×3+(10−1)×4]>1830, \)
which simplifies to \(m×5(6+36)>1830. \)
Further simplification yields \(m×5×42>1830\), and solving for \(m\), we find \(m>8.714. \)
Therefore, \(m=9.\)
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: