Let \(a_1,a_2,a_3,\ldots\) be the terms of an A.P. If
\[
\frac{a_1+a_2+\cdots+a_p}{a_1+a_2+\cdots+a_q}=\frac{p^2}{q^2}\quad (p\neq q),
\]
then \(\dfrac{a_6}{a_{21}}=\)
Show Hint
If the ratio of sums of an A.P. depends on \(n^2\), then:
Compare coefficients of \(n^2\) and \(n\) in \(S_n\)
This often gives a condition relating \(a\) and \(d\)
Step 1: Let the A.P. have first term \(a\) and common difference \(d\).
Sum of first \(n\) terms:
\[
S_n=\frac{n}{2}[2a+(n-1)d]
\]
Step 2: Given:
\[
\frac{S_p}{S_q}=\frac{p^2}{q^2}
\]
Substitute the formula for sums:
\[
\frac{p[2a+(p-1)d]}{q[2a+(q-1)d]}=\frac{p^2}{q^2}
\]
Cancel \(\frac{p}{q}\):
\[
\frac{2a+(p-1)d}{2a+(q-1)d}=\frac{p}{q}
\]
Step 3: Cross-multiply:
\[
q[2a+(p-1)d]=p[2a+(q-1)d]
\]
\[
2aq+qd(p-1)=2ap+pd(q-1)
\]
Simplifying:
\[
2a(q-p)=d(q-p)
\]
Since \(p\neq q\),
\[
2a=d \Rightarrow a=\frac{d}{2}
\]
Step 4: General term of the A.P.:
\[
a_n=a+(n-1)d=\frac{d}{2}+(n-1)d=\frac{(2n-1)d}{2}
\]
Step 5: Compute the required ratio:
\[
\frac{a_6}{a_{21}}=\frac{\frac{(2\cdot6-1)d}{2}}{\frac{(2\cdot21-1)d}{2}}
=\frac{11}{41}
\]