The points are:
\[ A(-1, 1), \, B(2, 3), \, P(h, k). \]
The area of \(\triangle PAB\) is given as 10. Using the determinant formula for the area of a triangle:
\[ \text{Area} = \frac{1}{2} \begin{vmatrix} h & k & 1 \\ -1 & 1 & 1 \\ 2 & 3 & 1 \end{vmatrix}. \]
Equating this to 10:
\[ \frac{1}{2} \begin{vmatrix} h & k & 1 \\ -1 & 1 & 1 \\ 2 & 3 & 1 \end{vmatrix} = 10. \]
Expand the determinant:
\[ \frac{1}{2} \left[h(1 - 3) - k(-1 - 2) + 1(-3 - 2)\right] = 10, \] \[ \frac{1}{2} \left[-2h + 3k - 5\right] = 10. \]
Simplify:
\[ -2h + 3k - 5 = 20, \] \[ -2h + 3k = 25. \]
The locus of \(P\) is obtained by replacing \(h\) with \(x\) and \(k\) with \(y\):
\[ -2x + 3y = 25. \]
Rewriting in the form \(ax + by = 15\):
\[ \frac{-2x}{5} + \frac{3y}{5} = 15, \] \[ -\frac{2}{5}x + \frac{3}{5}y = 15. \]
Here:
\[ a = -\frac{6}{5}, \, b = \frac{9}{5}. \]
Finally, calculate \(5a + 2b\):
\[ 5a + 2b = 5\left(-\frac{6}{5}\right) + 2\left(\frac{9}{5}\right), \] \[ 5a + 2b = -6 + \frac{18}{5} = \frac{-30 + 18}{5} = \frac{-12}{5}. \]
Thus, the value of \(5a + 2b\) is:
\[ \frac{-12}{5}. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: