
To find the value of \( \alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 \), we start by analyzing the provided sequences of π.π.π. random variables and the corresponding limits.
| \(P(X_1 = 0) = \frac{1}{3}\) | \(P(X_1 = 1) = \frac{1}{3}\) | \(P(X_1 = 2) = \frac{1}{3}\) |
Given:
Step 1: Analyze the Limit for \( \alpha_1 \)
The central limit theorem indicates \( S_n \to E[X] \) as \( n \to \infty \). Here,
\(E[X] = \frac{0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3}}{1} = 1\).
We have:
\(\alpha_1 = \lim_{n \to \infty} P\left( \frac{1}{2} < S_n < \frac{3}{4} \right) = 0\)since these bounds do not encompass 1.
Step 2: Analyze the Limit for \( \alpha_2 \)
\(\alpha_2 = \lim_{n \to \infty} P\left( \left| S_n - \frac{1}{3} \right| < 1 \right) = 1\)because this encompasses the mean value 1 as \( n \to \infty \).
Step 3: Analyze the Limit for \( \alpha_3 \)
Calculate \(E[X^2]\):
\(E[X^2] = \frac{0^2 \cdot \frac{1}{3} + 1^2 \cdot \frac{1}{3} + 2^2 \cdot \frac{1}{3}}{1} = \frac{5}{3}\).
\(\alpha_3 = \lim_{n \to \infty} P\left( \left| T_n - \frac{1}{3} \right| < \frac{3}{2} \right) = 1\)because it encompasses the expected value \(\frac{5}{3}\).
Step 4: Analyze the Limit for \( \alpha_4 \)
\(\alpha_4 = \lim_{n \to \infty} P\left( \left| T_n - \frac{2}{3} \right| < \frac{1}{2} \right) = 1\)since it includes \(\frac{5}{3}\).
Final Calculation:
Thus, the required value is:
\(\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 = 0 + 2 \cdot 1 + 3 \cdot 1 + 4 \cdot 1 = 6\)
The correct answer is 6.
```