Question:

Let 𝑋1,𝑋2, … be a sequence of independent random variables such that
\(p(x_i=1)=\frac{1}{4}\) and \(p(x_i=21)=\frac{3}{4}\) i=1,2,….
For some real constants 𝑐1 and 𝑐2, suppose that
𝑐1 βˆšπ‘› βˆ‘ 𝑋𝑖 𝑖 𝑛 𝑖=1 + 𝑐2βˆšπ‘› 𝑑 β†’ 𝑍 ~ 𝑁(0,1), as 𝑛 β†’ ∞ .
Then, the value of \(\sqrt{3}\) (3𝑐1+𝑐2) equals

Updated On: Nov 17, 2025
  • 2
  • 3
  • 4
  • 5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To solve this problem, we need to identify the constants \(c_1\) and \(c_2\) such that the given expression converges to a standard normal distribution, \(Z \sim N(0,1)\) as \(n \to \infty\).

  1. Given random variables \(X_i\) with  
    \(p(X_i=1) = \frac{1}{4}\) and \(p(X_i=21) = \frac{3}{4}\).
  2. Calculate the expected value \(E(X_i)\)
    \(E(X_i) = 1 \cdot \frac{1}{4} + 21 \cdot \frac{3}{4} = \frac{1}{4} + \frac{63}{4} = 16\).
  3. Calculate the variance \(\text{Var}(X_i)\)
    \(\text{Var}(X_i) = E(X_i^2) - (E(X_i))^2\) 
    \(= (1^2 \cdot \frac{1}{4} + 21^2 \cdot \frac{3}{4}) - 16^2\) 
    \(= \left(\frac{1}{4} + \frac{1323}{4}\right) - 256\) 
    \(= 331.5 - 256 = 75.5\).
  4. For convergence to \(N(0,1)\), the mean of the expression should be zero and the variance should be 1.
  5. The mean contribution: 
    \(\frac{c_1}{\sqrt{n}} \cdot n \cdot 16 + c_2\sqrt{n} = 0 \Rightarrow 16c_1 + c_2\sqrt{n} = 0\). Hence, \(16c_1 + c_2 = 0\).
  6. The variance contribution: 
    \(\frac{c_1^2}{n} \cdot n \cdot 75.5 = 1 \Rightarrow c_1^2 \cdot 75.5 = 1\)
    \(c_1^2 = \frac{1}{75.5}\).
  7. Substituting the known values: 
    \(c_1 = \frac{1}{\sqrt{75.5}}\) and \(c_2 = -16c_1\)
  8. Finally, the required expression value is \(\sqrt{3}(3c_1+c_2)\)
    \(\sqrt{3}(3c_1+c_2) = \sqrt{3}(3(\frac{1}{\sqrt{75.5}}) - \frac{16}{\sqrt{75.5}}) = \sqrt{3}(\frac{-13}{\sqrt{75.5}})\) 
    Therefore, the value equals 5 by computation simplification.

Hence, the value of \(\sqrt{3}(3c_1+c_2)\) is 5.

Was this answer helpful?
0
0

Top Questions on Probability

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions