We are given the expression: $\frac{\sqrt{|x^2 - 2|x| - 8}}{\log(2 - x - x^2)}$
To be real and defined:
% Option
(1) The quantity under the square root must be non-negative:
$\Rightarrow |x^2 - 2|x|| \geq 8$
% Option
(2) The log function must be defined and positive:
$\Rightarrow 2 - x - x^2>0 \Rightarrow x^2 + x - 2<0 \Rightarrow x \in (-2, 1)$
We must also ensure the log argument $\neq 1$ to avoid division by zero.
On checking for common $x$ values that satisfy both conditions, we find no such values exist.
Hence, the domain is empty.