The least count (LC) of a vernier caliper is given by: \[ \text{LC} = 1 \text{ main scale division} - 1 \text{ vernier scale division} \]
Given that the least count is \(\frac{1}{20N}\) cm and one main scale division is 1 mm = 0.1 cm, we can write:
\[\frac{1}{20N} \text{ cm} = 0.1 \text{ cm} - \frac{N}{x} \text{ cm}\]
where 'x' represents the total number of vernier scale divisions.
We can assume that 'x' vernier scale divisions are equal to N main scale divisions. Thus, \(\frac{N}{x} \text{ cm}\) represents the length of N vernier divisions. Solving for \(\frac{N}{x}\), we get:
\[\frac{N}{x} = 0.1 - \frac{1}{20N} = \frac{2N - 1}{20N} \text{ cm}\]
Now, we know that N vernier scale divisions coincide with (n) main scale divisions. Then, the length of N vernier divisions equals the length of n main scale divisions:
\[\frac{N}{x} \text{ cm} = n \times 0.1 \text{ cm}\]
Therefore:
\[n = \frac{N}{x} \times \frac{1}{0.1} = \frac{2N - 1}{20N} \times 10 = \frac{2N - 1}{2}\]
Thus, the number of main scale divisions that coincide with N vernier scale divisions is \(\frac{2N - 1}{2}\).
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).